Useful Data

M_c	Mass of the earth	$5.98 \times 10^{24} \text{ kg}$	
$R_{\rm e}$	Radius of the earth	$6.37 \times 10^6 \mathrm{m}$	
g	Free-fall acceleration on earth	9.80 m/s ²	
G	Gravitational constant	$6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2/\mathrm{kg}^2$	
k_{B}	Boltzmann's constant	$1.38 \times 10^{-23} \text{ J/K}$	
R	Gas constant	8.31 J/mol K	
$N_{\rm A}$	Avogadro's number	6.02×10^{23} particles/mol	
T_0	Absolute zero	−273°C	
σ	Stefan-Boltzmann constant	$5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$	
$p_{ m atm}$	Standard atmosphere	101,300 Pa	
v_{sound}	Speed of sound in air at 20°C	343 m/s	
$m_{\rm p}$	Mass of the proton (and the neutron)	$1.67 \times 10^{-27} \text{ kg}$	
m_e	Mass of the electron	$9.11 \times 10^{-31} \text{ kg}$	
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$	
ϵ_0	Permittivity constant	$8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{N}\mathrm{m}^2$	
μ_0	Permeability constant	$1.26 \times 10^{-6} \mathrm{Tm/A}$	
e	Fundamental unit of charge	$1.60 \times 10^{-19} \mathrm{C}$	
c	Speed of light in vacuum	$3.00 \times 10^{8} \text{ m/s}$	
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$	$4.14 \times 10^{-15} \text{ eV s}$
\hbar	Planck's constant	$1.05 \times 10^{-34} \mathrm{Js}$	$6.58 \times 10^{-16} \text{eV} \text{s}$
$a_{\rm B}$	Bohr radius	$5.29 \times 10^{-11} \text{ m}$	

Common Prefixes

Conversion Factors

Prefix	Meaning	Length	Time
femto-	10 ⁻¹⁵	1 in = 2.54 cm	1 day = 86,400 s
pico-	10^{-12}	1 mi = 1.609 km	1 year = 3.16×10^7 s
nano-	10-9	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10^{3}	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$
giga-	109	$1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$	1 rev/s = 60 rpm
terra-	10^{12}	1 cal = 4.19 J	
		$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	

Mathematical Approximations

Binominal approximation: $(1+x)^n \approx 1 + nx$ if $x \ll 1$

Small-angle approximation: $\sin\theta \approx \tan\theta \approx \theta$ and $\cos\theta \approx 1$ if $\theta \ll 1$ radian

Greek Letters Used in Physics

Alpha		α	Mu		μ
Beta		β	Pi		π
Gamma	Γ	γ	Rho		ρ
Delta	Δ	δ	Sigma	Σ	σ
Epsilon		ϵ	Tau		τ
Eta		η	Phi	Φ	φ
Theta	Θ	θ	Psi		ψ
Lambda		λ	Omega	Ω	ω

Astronomical Data

Planetary body	Mean distance from sun (m)	Period (years)	Mass (kg)	Mean radius (m)
Sun	_	_	1.99×10^{30}	6.96×10^{8}
Moon	3.84×10^{8}	27.3 days	7.36×10^{22}	1.74×10^{6}
Mercury	5.79×10^{10}	0.241	3.18×10^{23}	2.43×10^{6}
Venus	1.08×10^{11}	0.615	4.88×10^{24}	6.06×10^{6}
Earth	1.50×10^{11}	1.00	5.98×10^{24}	6.37×10^{6}
Mars	2.28×10^{11}	1.88	6.42×10^{23}	3.37×10^{6}
Jupiter	7.78×10^{11}	11.9	1.90×10^{27}	6.99×10^{7}
Saturn	1.43×10^{12}	29.5	5.68×10^{26}	5.85×10^{7}
Uranus	2.87×10^{12}	84.0	8.68×10^{25}	2.33×10^{7}
Neptune	4.50×10^{12}	165	1.03×10^{26}	2.21×10^{7}

^{*}Distance from earth

Typical Coefficients of Friction

	Static	Kinetic	Rolling
Material	μ_{s}	μ_{k}	$oldsymbol{\mu}_{ ext{r}}$
Rubber on dry concrete	1.00	0.80	0.02
Rubber on wet concrete	0.30	0.20	0.002
Steel on steel (dry)	0.80	0.60	0.002
Steel on steel (lubricated)	0.10	0.05	
Wood on wood	0.50	0.20	
Wood on snow	0.12	0.06	
Ice on ice	0.10	0.03	

Coefficients of Thermal Expansion

Material	α (°C ⁻¹)
Aluminum	2.3×10^{-5}
Brass	1.9×10^{-5}
Concrete	1.2×10^{-5}
Steel	1.1×10^{-5}
Invar	0.09×10^{-5}
Material	β (°C ⁻¹)
Gasoline	9.6×10^{-4}
Mercury	1.8×10^{-4}
Ethyl alcohol	1.1×10^{-4}

Heats of Transformation

Substance	$T_{\rm m}(^{\circ}{\rm C})$	$L_{\rm f}$ (J/kg)	T_{b} (°C)	$L_{\rm v} ({\rm J/kg})$
Water	0	3.33×10^{5}	100	22.6×10^{5}
Nitrogen (N2)	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Lead	328	0.25×10^{5}	1750	8.58×10^{5}

Properties of Materials

Substance	ρ (kg/m ³)	c (J/kgK)
Air at STP*	1.29	
Ethyl alcohol	790	2400
Gasoline	680	
Glycerin	1260	
Mercury	13,600	140
Oil (typical)	900	
Seawater	1030	
Water	1000	4190
Aluminum	2700	900
Copper	8920	385
Gold	19,300	129
Ice	920	2090
Iron	7870	449
Lead	11,300	128
Silicon	2330	703

[°]Standard temperature (0°C) and pressure (1 atm)

Thermal Conductivities

Material	k (W/m K)
Diamond	2000
Silver	430
Copper	400
Aluminum	240
Iron	80
Stainless steel	14
Ice	1.7
Concrete	0.8
Glass	0.8
Styrofoam	0.035
Air (20°C, 1 atm)	0.023

Molar Specific Heats of Gases

Gas	$C_{\rm P}\left({\rm J/mol}{\rm K}\right)$	$C_{V}(J/\text{mol }K)$
Monatomic (Gases	
He	20.8	12.5
Ne	20.8	12.5
Ar	20.8	12.5
Diatomic Ga	ises	
H ₂	28.7	20.4
N_2	29.1	20.8
O_2	29.2	20.9

Resistivity and Conductivity of Conductors Indices of Refraction

Metal	Resistivity (Ω m)	Conductivity ($\Omega^{-1} m^{-1}$)
Aluminum	2.8×10^{-8}	3.5×10^{7}
Copper	1.7×10^{-8}	6.0×10^{7}
Gold	2.4×10^{-8}	4.1×10^{7}
Iron	9.7×10^{-8}	1.0×10^{7}
Silver	1.6×10^{-8}	6.2×10^{7}
Tungsten	5.6×10^{-8}	1.8×10^{7}
Nichrome	1.5×10^{-6}	6.7×10^{5}
Carbon	3.5×10^{-5}	2.9×10^{4}

Material	Index of refraction	
Vacuum	1 exactly	
Air	1.00	
Water	1.33	
Ethyl alcohol	1.36	
Oil	1.46	
Glass	1.50	
Plastic	1.59	
Diamond	2.42	

Elastic Properties of Materials

Substance	Young's modulus (N/m²)	Bulk modulus (N/m²)
Steel	20×10^{10}	16×10^{10}
Copper	11×10^{10}	14×10^{10}
Aluminum	7×10^{10}	7×10^{10}
Concrete	3×10^{10}	-
Wood (Douglas fir)	1×10^{10}	-
Plastic (polystyrene)	0.3×10^{10}	-
Mercury	-	3×10^{10}
Water	-	0.2×10^{10}