Useful Data | M_c | Mass of the earth | $5.98 \times 10^{24} \text{ kg}$ | | |--------------------|---|---|---| | $R_{\rm e}$ | Radius of the earth | $6.37 \times 10^6 \mathrm{m}$ | | | g | Free-fall acceleration on earth | 9.80 m/s ² | | | G | Gravitational constant | $6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2/\mathrm{kg}^2$ | | | k_{B} | Boltzmann's constant | $1.38 \times 10^{-23} \text{ J/K}$ | | | R | Gas constant | 8.31 J/mol K | | | $N_{\rm A}$ | Avogadro's number | 6.02×10^{23} particles/mol | | | T_0 | Absolute zero | −273°C | | | σ | Stefan-Boltzmann constant | $5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$ | | | $p_{ m atm}$ | Standard atmosphere | 101,300 Pa | | | v_{sound} | Speed of sound in air at 20°C | 343 m/s | | | $m_{\rm p}$ | Mass of the proton (and the neutron) | $1.67 \times 10^{-27} \text{ kg}$ | | | m_e | Mass of the electron | $9.11 \times 10^{-31} \text{ kg}$ | | | K | Coulomb's law constant $(1/4\pi\epsilon_0)$ | $8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$ | | | ϵ_0 | Permittivity constant | $8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{N}\mathrm{m}^2$ | | | μ_0 | Permeability constant | $1.26 \times 10^{-6} \mathrm{Tm/A}$ | | | e | Fundamental unit of charge | $1.60 \times 10^{-19} \mathrm{C}$ | | | c | Speed of light in vacuum | $3.00 \times 10^{8} \text{ m/s}$ | | | h | Planck's constant | $6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$ | $4.14 \times 10^{-15} \text{ eV s}$ | | \hbar | Planck's constant | $1.05 \times 10^{-34} \mathrm{Js}$ | $6.58 \times 10^{-16} \text{eV} \text{s}$ | | $a_{\rm B}$ | Bohr radius | $5.29 \times 10^{-11} \text{ m}$ | | #### Common Prefixes #### Conversion Factors | Prefix | Meaning | Length | Time | |--------|-------------------|--|--| | femto- | 10 ⁻¹⁵ | 1 in = 2.54 cm | 1 day = 86,400 s | | pico- | 10^{-12} | 1 mi = 1.609 km | 1 year = 3.16×10^7 s | | nano- | 10-9 | 1 m = 39.37 in | Pressure | | micro- | 10^{-6} | 1 km = 0.621 mi | 1 atm = 101.3 kPa = 760 mm of Hg | | milli- | 10^{-3} | Velocity | $1 \text{ atm} = 14.7 \text{ lb/in}^2$ | | centi- | 10^{-2} | 1 mph = 0.447 m/s | Rotation | | kilo- | 10^{3} | 1 m/s = 2.24 mph = 3.28 ft/s | $1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$ | | mega- | 10^{6} | Mass and energy | $1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$ | | giga- | 109 | $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$ | 1 rev/s = 60 rpm | | terra- | 10^{12} | 1 cal = 4.19 J | | | | | $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$ | | # **Mathematical Approximations** Binominal approximation: $(1+x)^n \approx 1 + nx$ if $x \ll 1$ Small-angle approximation: $\sin\theta \approx \tan\theta \approx \theta$ and $\cos\theta \approx 1$ if $\theta \ll 1$ radian # **Greek Letters Used in Physics** | Alpha | | α | Mu | | μ | |---------|----------|------------|-------|---|----------| | Beta | | β | Pi | | π | | Gamma | Γ | γ | Rho | | ρ | | Delta | Δ | δ | Sigma | Σ | σ | | Epsilon | | ϵ | Tau | | τ | | Eta | | η | Phi | Φ | φ | | Theta | Θ | θ | Psi | | ψ | | Lambda | | λ | Omega | Ω | ω | #### **Astronomical Data** | Planetary
body | Mean distance
from sun (m) | Period
(years) | Mass
(kg) | Mean radius
(m) | |-------------------|-------------------------------|-------------------|-----------------------|----------------------| | Sun | _ | _ | 1.99×10^{30} | 6.96×10^{8} | | Moon | 3.84×10^{8} | 27.3 days | 7.36×10^{22} | 1.74×10^{6} | | Mercury | 5.79×10^{10} | 0.241 | 3.18×10^{23} | 2.43×10^{6} | | Venus | 1.08×10^{11} | 0.615 | 4.88×10^{24} | 6.06×10^{6} | | Earth | 1.50×10^{11} | 1.00 | 5.98×10^{24} | 6.37×10^{6} | | Mars | 2.28×10^{11} | 1.88 | 6.42×10^{23} | 3.37×10^{6} | | Jupiter | 7.78×10^{11} | 11.9 | 1.90×10^{27} | 6.99×10^{7} | | Saturn | 1.43×10^{12} | 29.5 | 5.68×10^{26} | 5.85×10^{7} | | Uranus | 2.87×10^{12} | 84.0 | 8.68×10^{25} | 2.33×10^{7} | | Neptune | 4.50×10^{12} | 165 | 1.03×10^{26} | 2.21×10^{7} | ^{*}Distance from earth # **Typical Coefficients of Friction** | | Static | Kinetic | Rolling | |-----------------------------|--------------------|--------------------|----------------------------| | Material | μ_{s} | μ_{k} | $oldsymbol{\mu}_{ ext{r}}$ | | Rubber on dry concrete | 1.00 | 0.80 | 0.02 | | Rubber on wet concrete | 0.30 | 0.20 | 0.002 | | Steel on steel (dry) | 0.80 | 0.60 | 0.002 | | Steel on steel (lubricated) | 0.10 | 0.05 | | | Wood on wood | 0.50 | 0.20 | | | Wood on snow | 0.12 | 0.06 | | | Ice on ice | 0.10 | 0.03 | | # **Coefficients of Thermal Expansion** | Material | α (°C ⁻¹) | |---------------|------------------------------| | Aluminum | 2.3×10^{-5} | | Brass | 1.9×10^{-5} | | Concrete | 1.2×10^{-5} | | Steel | 1.1×10^{-5} | | Invar | 0.09×10^{-5} | | Material | β (°C ⁻¹) | | Gasoline | 9.6×10^{-4} | | Mercury | 1.8×10^{-4} | | Ethyl alcohol | 1.1×10^{-4} | #### **Heats of Transformation** | Substance | $T_{\rm m}(^{\circ}{\rm C})$ | $L_{\rm f}$ (J/kg) | T_{b} (°C) | $L_{\rm v} ({\rm J/kg})$ | |---------------|------------------------------|----------------------|--------------|--------------------------| | Water | 0 | 3.33×10^{5} | 100 | 22.6×10^{5} | | Nitrogen (N2) | -210 | 0.26×10^{5} | -196 | 1.99×10^{5} | | Ethyl alcohol | -114 | 1.09×10^{5} | 78 | 8.79×10^{5} | | Mercury | -39 | 0.11×10^{5} | 357 | 2.96×10^{5} | | Lead | 328 | 0.25×10^{5} | 1750 | 8.58×10^{5} | ### **Properties of Materials** | Substance | ρ (kg/m ³) | c (J/kgK) | |---------------|-----------------------------|-----------| | Air at STP* | 1.29 | | | Ethyl alcohol | 790 | 2400 | | Gasoline | 680 | | | Glycerin | 1260 | | | Mercury | 13,600 | 140 | | Oil (typical) | 900 | | | Seawater | 1030 | | | Water | 1000 | 4190 | | Aluminum | 2700 | 900 | | Copper | 8920 | 385 | | Gold | 19,300 | 129 | | Ice | 920 | 2090 | | Iron | 7870 | 449 | | Lead | 11,300 | 128 | | Silicon | 2330 | 703 | [°]Standard temperature (0°C) and pressure (1 atm) #### **Thermal Conductivities** | Material | k (W/m K) | |-------------------|-----------| | Diamond | 2000 | | Silver | 430 | | Copper | 400 | | Aluminum | 240 | | Iron | 80 | | Stainless steel | 14 | | Ice | 1.7 | | Concrete | 0.8 | | Glass | 0.8 | | Styrofoam | 0.035 | | Air (20°C, 1 atm) | 0.023 | | | | # **Molar Specific Heats of Gases** | Gas | $C_{\rm P}\left({\rm J/mol}{\rm K}\right)$ | $C_{V}(J/\text{mol }K)$ | |----------------|--|-------------------------| | Monatomic (| Gases | | | He | 20.8 | 12.5 | | Ne | 20.8 | 12.5 | | Ar | 20.8 | 12.5 | | Diatomic Ga | ises | | | H ₂ | 28.7 | 20.4 | | N_2 | 29.1 | 20.8 | | O_2 | 29.2 | 20.9 | | | | | # Resistivity and Conductivity of Conductors Indices of Refraction | Metal | Resistivity (Ω m) | Conductivity ($\Omega^{-1} m^{-1}$) | |----------|---------------------------|---------------------------------------| | Aluminum | 2.8×10^{-8} | 3.5×10^{7} | | Copper | 1.7×10^{-8} | 6.0×10^{7} | | Gold | 2.4×10^{-8} | 4.1×10^{7} | | Iron | 9.7×10^{-8} | 1.0×10^{7} | | Silver | 1.6×10^{-8} | 6.2×10^{7} | | Tungsten | 5.6×10^{-8} | 1.8×10^{7} | | Nichrome | 1.5×10^{-6} | 6.7×10^{5} | | Carbon | 3.5×10^{-5} | 2.9×10^{4} | | Material | Index of refraction | | |---------------|---------------------|--| | Vacuum | 1 exactly | | | Air | 1.00 | | | Water | 1.33 | | | Ethyl alcohol | 1.36 | | | Oil | 1.46 | | | Glass | 1.50 | | | Plastic | 1.59 | | | Diamond | 2.42 | | # **Elastic Properties of Materials** | Substance | Young's modulus (N/m²) | Bulk modulus (N/m²) | |-----------------------|------------------------|----------------------| | Steel | 20×10^{10} | 16×10^{10} | | Copper | 11×10^{10} | 14×10^{10} | | Aluminum | 7×10^{10} | 7×10^{10} | | Concrete | 3×10^{10} | - | | Wood (Douglas fir) | 1×10^{10} | - | | Plastic (polystyrene) | 0.3×10^{10} | - | | Mercury | - | 3×10^{10} | | Water | - | 0.2×10^{10} |